Complete documentation of Leaf's API, including all classes, methods, and utilities.
Create and initialize machine learning models
import leaf as lf
model = lf.Model()
model.add(lf.layers.Dense(64))
model.add(lf.layers.Activation('relu'))
Train models with various configurations
model.train(
data=training_data,
labels=training_labels,
epochs=10,
batch_size=32
)
Make predictions with trained models
predictions = model.predict(test_data)
probabilities = model.predict_proba(test_data)
Load and preprocess datasets
data = lf.data.load_dataset('mnist')
X_train, X_test = lf.data.split_data(data)
Apply data transformations
normalized_data = lf.preprocessing.normalize(data)
encoded_labels = lf.preprocessing.one_hot_encode(labels)
Calculate model performance metrics
accuracy = lf.metrics.accuracy(y_true, y_pred)
precision = lf.metrics.precision(y_true, y_pred)
Visualize model results
lf.viz.plot_training_history(history)
lf.viz.plot_confusion_matrix(y_true, y_pred)