Explore practical examples and learn how to build machine learning models with Leaf.
Advanced financial analysis tool that predicts market trends and stock performance using multiple data sources.
import leaf as lf
# Create market analysis model
model = lf.MarketAnalyzer(
data_sources=['price_history', 'company_financials', 'news_sentiment'],
prediction_horizon=30 # days
)
# Add specialized layers for financial analysis
model.add_layers([
lf.layers.TimeSeriesEncoder(128),
lf.layers.AttentionLayer(),
lf.layers.MarketTrendPredictor()
])
# Train on historical market data
model.train(
market_data=historical_data,
validation_split=0.2,
epochs=100
)
# Make predictions
predictions = model.predict_trends(current_market_data)
Train a model to classify images using a convolutional neural network.
import leaf as lf
model = lf.Sequential([
lf.layers.Conv2D(32, kernel_size=3, activation='relu'),
lf.layers.MaxPooling2D(),
lf.layers.Flatten(),
lf.layers.Dense(10, activation='softmax')
])
model.train(images, labels, epochs=10)
Create a language model that can generate text sequences.
import leaf as lf
model = lf.Sequential([
lf.layers.Embedding(vocab_size, 256),
lf.layers.LSTM(512, return_sequences=True),
lf.layers.Dense(vocab_size, activation='softmax')
])
model.train(text_data, epochs=20)
Predict future values in a time series using LSTM networks.
import leaf as lf
model = lf.Sequential([
lf.layers.LSTM(64, input_shape=(sequence_length, features)),
lf.layers.Dense(1)
])
model.train(time_series_data, epochs=50)
Start building your own machine learning applications with Leaf today.